- Moreover, Sachtleben's research and development team continuously explores new frontiers in TiO2 applications
- China Lithopone Pigment Pricing Overview
- As demand grows for sustainable and efficient products, suppliers of titanium dioxide coatings are under increasing pressure to innovate and improve their offerings. Advances in nanotechnology have led to the development of nanoscale TiO2 particles, which exhibit even better performance due to their increased surface area.
lithopone supplier 30% has a lower coverage power than titanium dioxide. For this reason, lithopone supplier 30% can only partially substitute titanium dioxide, between 5 and 40%.
On the other hand, the U.S. Food and Drug Administration (FDA) in their Final Administrative Order on Sunscreen Drug Products posted in September 2021 still accepts titanium dioxide up to 25% in the list of Generally Recognized As Safe and Effective (GRASE) in the main document, without further clarification on what kind or size of particles [9]. However, on page 24 (Sunscreen containing nanomaterials) FDA clearly “distinguish nanomaterials from other forms of these ingredients'' (zinc oxide and titanium dioxide) and ask for comments on “any particular nanomaterials that you believe should not be permitted for use in OTC sunscreen products”. To the best of our knowledge, this Agency did not ban the use of nanoparticulate titanium dioxide in any form, even though it is mentioned on page 34 that the anatase form is the more photoactive one, due to the lack of evidence with real sunscreens OTC (over the counter) in vivo. Moreover, other regulations in Latin America (MERCOSUR agreement, 2006) do not state clearly their position on the use of nanoparticulate TiO2NPs [10].
Cosmetics
Lithopone 30% increases extruder performance and reduces processing costs, improves quality and is suitable for masterbatch for injection of Polyolefins, ABS, Polycarbonate, Polypropylene, Polyethylene, Polystyrene, single layer films, multi-layer films and for white, coloured and filled masterbatch. The combination of Lithopone 30 with TiO2 results in improved mechanical properties including higher elongation values and better impact resistance.
0.8%Max



In 2016, the European Food Safety Authority, or EFSA, assessed titanium dioxide and determined that the evidence available at the time didn’t conclusively point to any health problems for consumers.


English name: Lithopone
While this ruling from the EU General Court doesn’t immediately change the regulations surrounding titanium dioxide, nor does it change the ban that went into place in 2022, it does put the ingredient back in the spotlight.
In the coming months, we will see how the ruling impacts the regulations around titanium dioxide (E171), and we’ll see if the European Food Safety Authority (EFSA) will take another look at the body of scientific evidence used to justify the current ban on E171 in foods and pharmaceuticals.
The FDA and certain others say titanium dioxide is safe to use in foods and personal care products. The FDA provides strict guidelines on how much can be used in food. The limit is very small: no more than 1% titanium dioxide.
The production of Chinese anatase titanium dioxide involves a series of complex chemical processes, including hydrolysis and calcination of titanium precursors. These processes result in the formation of nanoscale particles of anatase titanium dioxide, which exhibit enhanced properties such as increased surface area and improved reactivity. The size and morphology of these nanoparticles can be controlled during the synthesis process, allowing for the production of tailored materials with specific properties for different applications.
There are two primary forms of titanium dioxide commercially available: anatase and rutile. The rutile form is typically used in sunscreens due to its superior ability to handle UV rays and stability in the presence of UV light. The anatase form is typically used in other types of products, such as paint. Another plus of the rutile form is that its UVA protection extends past 400 nanometers, which is the upper limit of UVA.